Forward-Backward Activation Algorithm for Hierarchical Hidden Markov Models

Hierarchical Hidden Markov Models (HHMMs) are sophisticated stochastic models that enable us to capture a hierarchical context characterization of sequence data. However, existing HHMM parameter estimation methods require large computations of time complexity O(TN^{2D}) at least for model inference, where D is the depth of the hierarchy, N is the number of states in each level, and T is the sequence length... (read more)

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet