Fourier Analysis Meets Runtime Analysis: Precise Runtimes on Plateaus

16 Feb 2023  ·  Benjamin Doerr, Andrew James Kelley ·

We propose a new method based on discrete Fourier analysis to analyze the time evolutionary algorithms spend on plateaus. This immediately gives a concise proof of the classic estimate of the expected runtime of the $(1+1)$ evolutionary algorithm on the Needle problem due to Garnier, Kallel, and Schoenauer (1999). We also use this method to analyze the runtime of the $(1+1)$ evolutionary algorithm on a new benchmark consisting of $n/\ell$ plateaus of effective size $2^\ell-1$ which have to be optimized sequentially in a LeadingOnes fashion. Using our new method, we determine the precise expected runtime both for static and fitness-dependent mutation rates. We also determine the asymptotically optimal static and fitness-dependent mutation rates. For $\ell = o(n)$, the optimal static mutation rate is approximately $1.59/n$. The optimal fitness dependent mutation rate, when the first $k$ fitness-relevant bits have been found, is asymptotically $1/(k+1)$. These results, so far only proven for the single-instance problem LeadingOnes, thus hold for a much broader class of problems. We expect similar extensions to be true for other important results on LeadingOnes. We are also optimistic that our Fourier analysis approach can be applied to other plateau problems as well.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here