Frequency Recognition in SSVEP-based BCI using Multiset Canonical Correlation Analysis

26 Aug 2013Yu ZhangGuoxu ZhouJing JinXingyu WangAndrzej Cichocki

Canonical correlation analysis (CCA) has been one of the most popular methods for frequency recognition in steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs). Despite its efficiency, a potential problem is that using pre-constructed sine-cosine waves as the required reference signals in the CCA method often does not result in the optimal recognition accuracy due to their lack of features from the real EEG data... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet