From Classification to Segmentation with Explainable AI: A Study on Crack Detection and Growth Monitoring

20 Sep 2023  ·  Florent Forest, Hugo Porta, Devis Tuia, Olga Fink ·

Monitoring surface cracks in infrastructure is crucial for structural health monitoring. Automatic visual inspection offers an effective solution, especially in hard-to-reach areas. Machine learning approaches have proven their effectiveness but typically require large annotated datasets for supervised training. Once a crack is detected, monitoring its severity often demands precise segmentation of the damage. However, pixel-level annotation of images for segmentation is labor-intensive. To mitigate this cost, one can leverage explainable artificial intelligence (XAI) to derive segmentations from the explanations of a classifier, requiring only weak image-level supervision. This paper proposes applying this methodology to segment and monitor surface cracks. We evaluate the performance of various XAI methods and examine how this approach facilitates severity quantification and growth monitoring. Results reveal that while the resulting segmentation masks may exhibit lower quality than those produced by supervised methods, they remain meaningful and enable severity monitoring, thus reducing substantial labeling costs.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here