From Pixels to Torques: Policy Learning with Deep Dynamical Models

8 Feb 2015  ·  Niklas Wahlström, Thomas B. Schön, Marc Peter Deisenroth ·

Data-efficient learning in continuous state-action spaces using very high-dimensional observations remains a key challenge in developing fully autonomous systems. In this paper, we consider one instance of this challenge, the pixels to torques problem, where an agent must learn a closed-loop control policy from pixel information only. We introduce a data-efficient, model-based reinforcement learning algorithm that learns such a closed-loop policy directly from pixel information. The key ingredient is a deep dynamical model that uses deep auto-encoders to learn a low-dimensional embedding of images jointly with a predictive model in this low-dimensional feature space. Joint learning ensures that not only static but also dynamic properties of the data are accounted for. This is crucial for long-term predictions, which lie at the core of the adaptive model predictive control strategy that we use for closed-loop control. Compared to state-of-the-art reinforcement learning methods for continuous states and actions, our approach learns quickly, scales to high-dimensional state spaces and is an important step toward fully autonomous learning from pixels to torques.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here