Paper

Fully automatic structure from motion with a spline-based environment representation

While the common environment representation in structure from motion is given by a sparse point cloud, the community has also investigated the use of lines to better enforce the inherent regularities in man-made surroundings. Following the potential of this idea, the present paper introduces a more flexible higher-order extension of points that provides a general model for structural edges in the environment, no matter if straight or curved. Our model relies on linked B\'ezier curves, the geometric intuition of which proves great benefits during parameter initialization and regularization. We present the first fully automatic pipeline that is able to generate spline-based representations without any human supervision. Besides a full graphical formulation of the problem, we introduce both geometric and photometric cues as well as higher-level concepts such overall curve visibility and viewing angle restrictions to automatically manage the correspondences in the graph. Results prove that curve-based structure from motion with splines is able to outperform state-of-the-art sparse feature-based methods, as well as to model curved edges in the environment.

Results in Papers With Code
(↓ scroll down to see all results)