Functional Frank-Wolfe Boosting for General Loss Functions

9 Oct 2015  ·  Chu Wang, Yingfei Wang, Weinan E, Robert Schapire ·

Boosting is a generic learning method for classification and regression. Yet, as the number of base hypotheses becomes larger, boosting can lead to a deterioration of test performance. Overfitting is an important and ubiquitous phenomenon, especially in regression settings. To avoid overfitting, we consider using $l_1$ regularization. We propose a novel Frank-Wolfe type boosting algorithm (FWBoost) applied to general loss functions. By using exponential loss, the FWBoost algorithm can be rewritten as a variant of AdaBoost for binary classification. FWBoost algorithms have exactly the same form as existing boosting methods, in terms of making calls to a base learning algorithm with different weights update. This direct connection between boosting and Frank-Wolfe yields a new algorithm that is as practical as existing boosting methods but with new guarantees and rates of convergence. Experimental results show that the test performance of FWBoost is not degraded with larger rounds in boosting, which is consistent with the theoretical analysis.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here