Functional Magnetic Resonance Imaging Changes and Increased Muscle Pressure in Fibromyalgia: Insights from Prominent Theories of Pain and Muscle Imaging

Fibromyalgia is a complicated and multifaceted disorder marked by widespread chronic pain, fatigue, and muscle tenderness. Current explanations for the pathophysiology of this condition include the Central Sensitization Theory, Cytokine Inflammation Theory, Muscle Hypoxia, Muscle Tender Point Theory, and Small Fiber Neuropathy Theory. The objective of this review article is to examine and explain each of these current theories and to provide a background on our current understanding of fibromyalgia. The medical literature on this disorder, as well as on the roles of functional magnetic resonance imaging (fMRI) and elastography as diagnostic tools, was reviewed from the 1970s to early 2023, primarily using the PubMed database. Five prominent theories of fibromyalgia etiology were examined: 1) Central Sensitization Theory; 2) Cytokine Inflammation Theory; 3) Muscle Hypoxia; 4) Muscle Tender Point Theory; and 5) Small Fiber Neuropathy Theory. Previous fMRI studies of FMS have revealed two key findings. First, patients with FMS show altered activation patterns in brain regions involved in pain processing. Second, the connectivity between brain structures in individuals diagnosed with FMS and healthy controls is different. Both of these findings will be expanded upon in this paper. The article also explores the potential for future research in fibromyalgia due to the advancements in fMRI and elastography techniques, such as shear wave ultrasound. Increased understanding of the underlying mechanisms contributing to fibromyalgia symptoms is necessary for improved diagnosis and treatment, and advanced imaging techniques can aid in this process.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here