Paper

GADER: GAit DEtection and Recognition in the Wild

Gait recognition holds the promise of robustly identifying subjects based on their walking patterns instead of color information. While previous approaches have performed well for curated indoor scenes, they have significantly impeded applicability in unconstrained situations, e.g. outdoor, long distance scenes. We propose an end-to-end GAit DEtection and Recognition (GADER) algorithm for human authentication in challenging outdoor scenarios. Specifically, GADER leverages a Double Helical Signature to detect the fragment of human movement and incorporates a novel gait recognition method, which learns representations by distilling from an auxiliary RGB recognition model. At inference time, GADER only uses the silhouette modality but benefits from a more robust representation. Extensive experiments on indoor and outdoor datasets demonstrate that the proposed method outperforms the State-of-The-Arts for gait recognition and verification, with a significant 20.6% improvement on unconstrained, long distance scenes.

Results in Papers With Code
(↓ scroll down to see all results)