Gain and Phase: Decentralized Stability Conditions for Power Electronics-Dominated Power Systems

14 Sep 2023  ·  Linbin Huang, Dan Wang, Xiongfei Wang, Huanhai Xin, Ping Ju, Karl H. Johansson, Florian Dörfler ·

This paper proposes decentralized stability conditions for multi-converter systems based on the combination of the small gain theorem and the small phase theorem. Instead of directly computing the closed-loop dynamics, e.g., eigenvalues of the state-space matrix, or using the generalized Nyquist stability criterion, the proposed stability conditions are more scalable and computationally lighter, which aim at evaluating the closed-loop system stability by comparing the individual converter dynamics with the network dynamics in a decentralized and open-loop manner. Moreover, our approach can handle heterogeneous converters' dynamics and is suitable to analyze large-scale multi-converter power systems that contain grid-following (GFL), grid-forming (GFM) converters, and synchronous generators. Compared with other decentralized stability conditions, e.g., passivity-based stability conditions, the proposed conditions are significantly less conservative and can be generally satisfied in practice across the whole frequency range.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here