Gamblets for opening the complexity-bottleneck of implicit schemes for hyperbolic and parabolic ODEs/PDEs with rough coefficients

24 Jun 2016  ·  Houman Owhadi, Lei Zhang ·

Implicit schemes are popular methods for the integration of time dependent PDEs such as hyperbolic and parabolic PDEs. However the necessity to solve corresponding linear systems at each time step constitutes a complexity bottleneck in their application to PDEs with rough coefficients... We present a generalization of gamblets introduced in \cite{OwhadiMultigrid:2015} enabling the resolution of these implicit systems in near-linear complexity and provide rigorous a-priori error bounds on the resulting numerical approximations of hyperbolic and parabolic PDEs. These generalized gamblets induce a multiresolution decomposition of the solution space that is adapted to both the underlying (hyperbolic and parabolic) PDE (and the system of ODEs resulting from space discretization) and to the time-steps of the numerical scheme. read more

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here