GAN-powered Deep Distributional Reinforcement Learning for Resource Management in Network Slicing

10 May 2019  ·  Yuxiu Hua, Rongpeng Li, Zhifeng Zhao, Xianfu Chen, Honggang Zhang ·

Network slicing is a key technology in 5G communications system. Its purpose is to dynamically and efficiently allocate resources for diversified services with distinct requirements over a common underlying physical infrastructure. Therein, demand-aware resource allocation is of significant importance to network slicing. In this paper, we consider a scenario that contains several slices in a radio access network with base stations that share the same physical resources (e.g., bandwidth or slots). We leverage deep reinforcement learning (DRL) to solve this problem by considering the varying service demands as the environment state and the allocated resources as the environment action. In order to reduce the effects of the annoying randomness and noise embedded in the received service level agreement (SLA) satisfaction ratio (SSR) and spectrum efficiency (SE), we primarily propose generative adversarial network-powered deep distributional Q network (GAN-DDQN) to learn the action-value distribution driven by minimizing the discrepancy between the estimated action-value distribution and the target action-value distribution. We put forward a reward-clipping mechanism to stabilize GAN-DDQN training against the effects of widely-spanning utility values. Moreover, we further develop Dueling GAN-DDQN, which uses a specially designed dueling generator, to learn the action-value distribution by estimating the state-value distribution and the action advantage function. Finally, we verify the performance of the proposed GAN-DDQN and Dueling GAN-DDQN algorithms through extensive simulations.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here