Gaussian Process Neurons

ICLR 2018  ·  Sebastian Urban, Patrick van der Smagt ·

We propose a method to learn stochastic activation functions for use in probabilistic neural networks. First, we develop a framework to embed stochastic activation functions based on Gaussian processes in probabilistic neural networks. Second, we analytically derive expressions for the propagation of means and covariances in such a network, thus allowing for an efficient implementation and training without the need for sampling. Third, we show how to apply variational Bayesian inference to regularize and efficiently train this model. The resulting model can deal with uncertain inputs and implicitly provides an estimate of the confidence of its predictions. Like a conventional neural network it can scale to datasets of arbitrary size and be extended with convolutional and recurrent connections, if desired.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here