Gender Genetic Algorithm in the Dynamic Optimization Problem

14 Feb 2020  ·  P. A. Golovinski, S. A. Kolodyazhnyi ·

A general approach to optimizing fast processes using a gender genetic algorithm is described. Its difference from the more traditional genetic algorithm it contains division the artificial population into two sexes. Male subpopulations undergo large mutations and more strong selection compared to female individuals from another subset. This separation allows combining the rapid adaptability of the entire population to changes due to the variation of the male subpopulation with fixation of adaptability in the female part. The advantage of the effect of additional individual learning in the form of Boldwin effect in finding optimal solutions is observed in comparison with the usual gender genetic algorithm. As a promising application of the gender genetic algorithm with the Boldwin effect, the dynamics of extinguishing natural fires is pointed.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here