Accounting for Unobserved Confounding in Domain Generalization

21 Jul 2020  ·  Alexis Bellot, Mihaela van der Schaar ·

This paper investigates the problem of learning robust, generalizable prediction models from a combination of multiple datasets and qualitative assumptions about the underlying data-generating model. Part of the challenge of learning robust models lies in the influence of unobserved confounders that void many of the invariances and principles of minimum error presently used for this problem. Our approach is to define a different invariance property of causal solutions in the presence of unobserved confounders which, through a relaxation of this invariance, can be connected with an explicit distributionally robust optimization problem over a set of affine combination of data distributions. Concretely, our objective takes the form of a standard loss, plus a regularization term that encourages partial equality of error derivatives with respect to model parameters. We demonstrate the empirical performance of our approach on healthcare data from different modalities, including image, speech and tabular data.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here