Generalization Bounds for Neural Networks via Approximate Description Length

NeurIPS 2019 Amit DanielyElad Granot

We investigate the sample complexity of networks with bounds on the magnitude of its weights. In particular, we consider the class \[ H=\left\{W_t\circ\rho\circ \ldots\circ\rho\circ W_{1} :W_1,\ldots,W_{t-1}\in M_{d, d}, W_t\in M_{1,d}\right\} \] where the spectral norm of each $W_i$ is bounded by $O(1)$, the Frobenius norm is bounded by $R$, and $\rho$ is the sigmoid function $\frac{e^x}{1+e^x}$ or the smoothened ReLU function $ \ln (1+e^x)$... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper