Generalization of machine-learned turbulent heat flux models applied to film cooling flows

7 Oct 2019  ·  Pedro M. Milani, Julia Ling, John K. Eaton ·

The design of film cooling systems relies heavily on Reynolds-Averaged Navier-Stokes (RANS) simulations, which solve for mean quantities and model all turbulent scales. Most turbulent heat flux models, which are based on isotropic diffusion with a fixed turbulent Prandtl number ($Pr_t$), fail to accurately predict heat transfer in film cooling flows. In the present work, machine learning models are trained to predict a non-uniform $Pr_t$ field, using various datasets as training sets. The ability of these models to generalize beyond the flows on which they were trained is explored. Furthermore, visualization techniques are employed to compare distinct datasets and to help explain the cross-validation results.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here