Generalization Properties of Adversarial Training for $\ell_0$-Bounded Adversarial Attacks

5 Feb 2024  ·  Payam Delgosha, Hamed Hassani, Ramtin Pedarsani ·

We have widely observed that neural networks are vulnerable to small additive perturbations to the input causing misclassification. In this paper, we focus on the $\ell_0$-bounded adversarial attacks, and aim to theoretically characterize the performance of adversarial training for an important class of truncated classifiers. Such classifiers are shown to have strong performance empirically, as well as theoretically in the Gaussian mixture model, in the $\ell_0$-adversarial setting. The main contribution of this paper is to prove a novel generalization bound for the binary classification setting with $\ell_0$-bounded adversarial perturbation that is distribution-independent. Deriving a generalization bound in this setting has two main challenges: (i) the truncated inner product which is highly non-linear; and (ii) maximization over the $\ell_0$ ball due to adversarial training is non-convex and highly non-smooth. To tackle these challenges, we develop new coding techniques for bounding the combinatorial dimension of the truncated hypothesis class.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods