Generalize Symbolic Knowledge With Neural Rule Engine

30 Aug 2018  ·  Shen Li, Hengru Xu, Zhengdong Lu ·

As neural networks have dominated the state-of-the-art results in a wide range of NLP tasks, it attracts considerable attention to improve the performance of neural models by integrating symbolic knowledge. Different from existing works, this paper investigates the combination of these two powerful paradigms from the knowledge-driven side. We propose Neural Rule Engine (NRE), which can learn knowledge explicitly from logic rules and then generalize them implicitly with neural networks. NRE is implemented with neural module networks in which each module represents an action of a logic rule. The experiments show that NRE could greatly improve the generalization abilities of logic rules with a significant increase in recall. Meanwhile, the precision is still maintained at a high level.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here