Generalized energy and gradient flow via graph framelets

8 Oct 2022  ·  Andi Han, Dai Shi, Zhiqi Shao, Junbin Gao ·

In this work, we provide a theoretical understanding of the framelet-based graph neural networks through the perspective of energy gradient flow. By viewing the framelet-based models as discretized gradient flows of some energy, we show it can induce both low-frequency and high-frequency-dominated dynamics, via the separate weight matrices for different frequency components. This substantiates its good empirical performance on both homophilic and heterophilic graphs. We then propose a generalized energy via framelet decomposition and show its gradient flow leads to a novel graph neural network, which includes many existing models as special cases. We then explain how the proposed model generally leads to more flexible dynamics, thus potentially enhancing the representation power of graph neural networks.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here