Generalized Thompson Sampling for Contextual Bandits

27 Oct 2013  ·  Lihong Li ·

Thompson Sampling, one of the oldest heuristics for solving multi-armed bandits, has recently been shown to demonstrate state-of-the-art performance. The empirical success has led to great interests in theoretical understanding of this heuristic. In this paper, we approach this problem in a way very different from existing efforts. In particular, motivated by the connection between Thompson Sampling and exponentiated updates, we propose a new family of algorithms called Generalized Thompson Sampling in the expert-learning framework, which includes Thompson Sampling as a special case. Similar to most expert-learning algorithms, Generalized Thompson Sampling uses a loss function to adjust the experts' weights. General regret bounds are derived, which are also instantiated to two important loss functions: square loss and logarithmic loss. In contrast to existing bounds, our results apply to quite general contextual bandits. More importantly, they quantify the effect of the "prior" distribution on the regret bounds.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here