Generalizing Convolutional Neural Networks for Equivariance to Lie Groups on Arbitrary Continuous Data

The translation equivariance of convolutional layers enables convolutional neural networks to generalize well on image problems. While translation equivariance provides a powerful inductive bias for images, we often additionally desire equivariance to other transformations, such as rotations, especially for non-image data... We propose a general method to construct a convolutional layer that is equivariant to transformations from any specified Lie group with a surjective exponential map. Incorporating equivariance to a new group requires implementing only the group exponential and logarithm maps, enabling rapid prototyping. Showcasing the simplicity and generality of our method, we apply the same model architecture to images, ball-and-stick molecular data, and Hamiltonian dynamical systems. For Hamiltonian systems, the equivariance of our models is especially impactful, leading to exact conservation of linear and angular momentum. read more

PDF Abstract ICML 2020 PDF

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here