Generating captions without looking beyond objects

12 Oct 2016  ·  Hendrik Heuer, Christof Monz, Arnold W. M. Smeulders ·

This paper explores new evaluation perspectives for image captioning and introduces a noun translation task that achieves comparative image caption generation performance by translating from a set of nouns to captions. This implies that in image captioning, all word categories other than nouns can be evoked by a powerful language model without sacrificing performance on n-gram precision. The paper also investigates lower and upper bounds of how much individual word categories in the captions contribute to the final BLEU score. A large possible improvement exists for nouns, verbs, and prepositions.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here