Generating Diverse and Consistent QA pairs from Contexts with Information-Maximizing Hierarchical Conditional VAEs

One of the most crucial challenges in question answering (QA) is the scarcity of labeled data, since it is costly to obtain question-answer (QA) pairs for a target text domain with human annotation. An alternative approach to tackle the problem is to use automatically generated QA pairs from either the problem context or from large amount of unstructured texts (e.g. Wikipedia)... (read more)

PDF Abstract ACL 2020 PDF ACL 2020 Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
VAE
Generative Models