Paper

Generating Human-Centric Visual Cues for Human-Object Interaction Detection via Large Vision-Language Models

Human-object interaction (HOI) detection aims at detecting human-object pairs and predicting their interactions. However, the complexity of human behavior and the diverse contexts in which these interactions occur make it challenging. Intuitively, human-centric visual cues, such as the involved participants, the body language, and the surrounding environment, play crucial roles in shaping these interactions. These cues are particularly vital in interpreting unseen interactions. In this paper, we propose three prompts with VLM to generate human-centric visual cues within an image from multiple perspectives of humans. To capitalize on these rich Human-Centric Visual Cues, we propose a novel approach named HCVC for HOI detection. Particularly, we develop a transformer-based multimodal fusion module with multitower architecture to integrate visual cue features into the instance and interaction decoders. Our extensive experiments and analysis validate the efficacy of leveraging the generated human-centric visual cues for HOI detection. Notably, the experimental results indicate the superiority of the proposed model over the existing state-of-the-art methods on two widely used datasets.

Results in Papers With Code
(↓ scroll down to see all results)