Generating Less Certain Adversarial Examples Improves Robust Generalization

6 Oct 2023  ·  Minxing Zhang, Michael Backes, Xiao Zhang ·

Recent studies have shown that deep neural networks are vulnerable to adversarial examples. Numerous defenses have been proposed to improve model robustness, among which adversarial training is most successful. In this work, we revisit the robust overfitting phenomenon. In particular, we argue that overconfident models produced during adversarial training could be a potential cause, supported by the empirical observation that the predicted labels of adversarial examples generated by models with better robust generalization ability tend to have significantly more even distributions. Based on the proposed definition of adversarial certainty, we incorporate an extragradient step in the adversarial training framework to search for models that can generate adversarially perturbed inputs with lower certainty, further improving robust generalization. Our approach is general and can be easily combined with other variants of adversarial training methods. Extensive experiments on image benchmarks demonstrate that our method effectively alleviates robust overfitting and is able to produce models with consistently improved robustness.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here