Generative Language-Grounded Policy in Vision-and-Language Navigation with Bayes' Rule

ICLR 2021  ·  Shuhei Kurita, Kyunghyun Cho ·

Vision-and-language navigation (VLN) is a task in which an agent is embodied in a realistic 3D environment and follows an instruction to reach the goal node. While most of the previous studies have built and investigated a discriminative approach, we notice that there are in fact two possible approaches to building such a VLN agent: discriminative \textit{and} generative. In this paper, we design and investigate a generative language-grounded policy which uses a language model to compute the distribution over all possible instructions i.e. all possible sequences of vocabulary tokens given action and the transition history. In experiments, we show that the proposed generative approach outperforms the discriminative approach in the Room-2-Room (R2R) and Room-4-Room (R4R) datasets, especially in the unseen environments. We further show that the combination of the generative and discriminative policies achieves close to the state-of-the art results in the R2R dataset, demonstrating that the generative and discriminative policies capture the different aspects of VLN.

PDF Abstract ICLR 2021 PDF ICLR 2021 Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here