Generative Neural Samplers for the Quantum Heisenberg Chain

18 Dec 2020  ·  Johanna Vielhaben, Nils Strodthoff ·

Generative neural samplers offer a complementary approach to Monte Carlo methods for problems in statistical physics and quantum field theory. This work tests the ability of generative neural samplers to estimate observables for real-world low-dimensional spin systems. It maps out how autoregressive models can sample configurations of a quantum Heisenberg chain via a classical approximation based on the Suzuki-Trotter transformation. We present results for energy, specific heat and susceptibility for the isotropic XXX and the anisotropic XY chain that are in good agreement with Monte Carlo results within the same approximation scheme.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here