Genetic Algorithm-based Beamforming in Subarray Architectures for GEO Satellites

The incorporation of subarrays in Direct Radiating Arrays for satellite missions is fundamental in reducing the number of Radio Frequency chains, which correspondingly diminishes cost, power consumption, space, and mass. Despite the advantages, previous beamforming schemes incur significant losses during beam scanning, particularly when hybrid beamforming is not employed. Consequently, this paper introduces an algorithm capable of compensating for these losses by increasing the power, for this, the algorithm will activate radiating elements required to address a specific Effective Isotropic Radiated Power for a beam pattern over Earth, projected from a GeoStationary satellite. In addition to the aforementioned compensation, other beam parameters have been addressed in the algorithm, such as beamwidth and Side Lobe Levels. To achieve these objectives, we propose employing the array thinning concept through the use of genetic algorithms, which enable beam shaping with the desired characteristics and power. The full array design considers an open-ended waveguide, configured to operate in circular polarization within the Ka-band frequency range of 17.7-20.2 GHz.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here