Genetic Improvement in the Shackleton Framework for Optimizing LLVM Pass Sequences

28 Apr 2022  ·  Shuyue Stella Li, Hannah Peeler, Andrew N. Sloss, Kenneth N. Reid, Wolfgang Banzhaf ·

Genetic improvement is a search technique that aims to improve a given acceptable solution to a problem. In this paper, we present the novel use of genetic improvement to find problem-specific optimized LLVM pass sequences. We develop a pass-level patch representation in the linear genetic programming framework, Shackleton, to evolve the modifications to be applied to the default optimization pass sequences. Our GI-evolved solution has a mean of 3.7% runtime improvement compared to the -O3 optimization level in the default code generation options which optimizes on runtime. The proposed GI method provides an automatic way to find a problem-specific optimization sequence that improves upon a general solution without any expert domain knowledge. In this paper, we discuss the advantages and limitations of the GI feature in the Shackleton Framework and present our results.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here