Geometric Matrix Completion via Sylvester Multi-Graph Neural Network

19 Jun 2022  ·  Boxin Du, Changhe Yuan, Fei Wang, Hanghang Tong ·

Despite the success of the Sylvester equation empowered methods on various graph mining applications, such as semi-supervised label learning and network alignment, there also exists several limitations. The Sylvester equation's inability of modeling non-linear relations and the inflexibility of tuning towards different tasks restrict its performance. In this paper, we propose an end-to-end neural framework, SYMGNN, which consists of a multi-network neural aggregation module and a prior multi-network association incorporation learning module. The proposed framework inherits the key ideas of the Sylvester equation, and meanwhile generalizes it to overcome aforementioned limitations. Empirical evaluations on real-world datasets show that the instantiations of SYMGNN overall outperform the baselines in geometric matrix completion task, and its low-rank instantiation could further reduce the memory consumption by 16.98\% on average.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here