Geometric Sequence Decomposition with $k$-simplexes Transform

31 Oct 2019  ·  Woong-Hee Lee, Jong-Ho Lee, Ki Won Sung ·

This paper presents a computationally efficient technique for decomposing non-orthogonally superposed $k$ geometric sequences. The method, which is named as geometric sequence decomposition with $k$-simplexes transform (GSD-ST), is based on the concept of transforming an observed sequence to multiple $k$-simplexes in a virtual $k$-dimensional space and correlating the volumes of the transformed simplexes. Hence, GSD-ST turns the problem of decomposing $k$ geometric sequences into one of solving a $k$-th order polynomial equation. Our technique has significance for wireless communications because sampled points of a radio wave comprise a geometric sequence. This implies that GSD-ST is capable of demodulating randomly combined radio waves, thereby eliminating the effect of interference. To exemplify the potential of GSD-ST, we propose a new radio access scheme, namely non-orthogonal interference-free radio access (No-INFRA). Herein, GSD-ST enables the collision-free reception of uncoordinated access requests. Numerical results show that No-INFRA effectively resolves the colliding access requests when the interference is dominant.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here