Geometry Guided Convolutional Neural Networks for Self-Supervised Video Representation Learning

It is often laborious and costly to manually annotate videos for training high-quality video recognition models, so there has been some work and interest in exploring alternative, cheap, and yet often noisy and indirect, training signals for learning the video representations. However, these signals are still coarse, supplying supervision at the whole video frame level, and subtle, sometimes enforcing the learning agent to solve problems that are even hard for humans... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet