Geometry-Informed Neural Networks

We introduce the concept of geometry-informed neural networks (GINNs), which encompass (i) learning under geometric constraints, (ii) neural fields as a suitable representation, and (iii) generating diverse solutions to under-determined systems often encountered in geometric tasks. Notably, the GINN formulation does not require training data, and as such can be considered generative modeling driven purely by constraints. We add an explicit diversity loss to mitigate mode collapse. We consider several constraints, in particular, the connectedness of components which we convert to a differentiable loss through Morse theory. Experimentally, we demonstrate the efficacy of the GINN learning paradigm across a range of two and three-dimensional scenarios with increasing levels of complexity.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here