GGNNs : Generalizing GNNs using Residual Connections and Weighted Message Passing

26 Nov 2023  ·  Abhinav Raghuvanshi, Kushal Sokke Malleshappa ·

Many real-world phenomena can be modeled as a graph, making them extremely valuable due to their ubiquitous presence. GNNs excel at capturing those relationships and patterns within these graphs, enabling effective learning and prediction tasks. GNNs are constructed using Multi-Layer Perceptrons (MLPs) and incorporate additional layers for message passing to facilitate the flow of features among nodes. It is commonly believed that the generalizing power of GNNs is attributed to the message-passing mechanism between layers, where nodes exchange information with their neighbors, enabling them to effectively capture and propagate information across the nodes of a graph. Our technique builds on these results, modifying the message-passing mechanism further: one by weighing the messages before accumulating at each node and another by adding Residual connections. These two mechanisms show significant improvements in learning and faster convergence

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here