Global Convergence of Online Optimization for Nonlinear Model Predictive Control

NeurIPS 2021  ·  Sen Na ·

We study a real-time iteration (RTI) scheme for solving online optimization problem appeared in nonlinear optimal control. The proposed RTI scheme modifies the existing RTI-based model predictive control (MPC) algorithm, by selecting the stepsize of each Newton step at each sampling time using a differentiable exact augmented Lagrangian. The scheme can adaptively select the penalty parameters of augmented Lagrangian on the fly, which are shown to be stabilized after certain time periods. We prove under generic assumptions that, by involving stepsize selection instead of always using a full Newton step (like what most of the existing RTIs do), the scheme converges globally: for any initial point, the KKT residuals of the subproblems converge to zero. A key step is to show that augmented Lagrangian keeps decreasing as horizon moves forward. We demonstrate the global convergence behavior of the proposed RTI scheme in a numerical experiment.

PDF Abstract NeurIPS 2021 PDF NeurIPS 2021 Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here