Global convergence of optimized adaptive importance samplers

2 Jan 2022  ·  Ömer Deniz Akyildiz ·

We analyze the optimized adaptive importance sampler (OAIS) for performing Monte Carlo integration with general proposals. We leverage a classical result which shows that the bias and the mean-squared error (MSE) of the importance sampling scales with the $\chi^2$-divergence between the target and the proposal and develop a scheme which performs global optimization of $\chi^2$-divergence. While it is known that this quantity is convex for exponential family proposals, the case of the general proposals has been an open problem. We close this gap by utilizing the nonasymptotic bounds for stochastic gradient Langevin dynamics (SGLD) for the global optimization of $\chi^2$-divergence and derive nonasymptotic bounds for the MSE by leveraging recent results from non-convex optimization literature. The resulting AIS schemes have explicit theoretical guarantees that are uniform-in-time.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here