Global disease spread: statistics and estimation of arrival times

11 Jan 2008  ·  Aurelien Gautreau, Alain Barrat, Marc Barthelemy ·

We study metapopulation models for the spread of epidemics in which different subpopulations (cities) are connected by fluxes of individuals (travelers). This framework allows to describe the spread of a disease on a large scale and we focus here on the computation of the arrival time of a disease as a function of the properties of the seed of the epidemics and of the characteristics of the network connecting the various subpopulations. Using analytical and numerical arguments, we introduce an easily computable quantity which approximates this average arrival time. We show on the example of a disease spread on the world-wide airport network that this quantity predicts with a good accuracy the order of arrival of the disease in the various subpopulations in each realization of epidemic scenario, and not only for an average over realizations. Finally, this quantity might be useful in the identification of the dominant paths of the disease spread.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here