Global Optimization of Objective Functions Represented by ReLU Networks

Neural networks can learn complex, non-convex functions, and it is challenging to guarantee their correct behavior in safety-critical contexts. Many approaches exist to find failures in networks (e.g., adversarial examples), but these cannot guarantee the absence of failures. Verification algorithms address this need and provide formal guarantees about a neural network by answering "yes or no" questions. For example, they can answer whether a violation exists within certain bounds. However, individual "yes or no" questions cannot answer qualitative questions such as "what is the largest error within these bounds"; the answers to these lie in the domain of optimization. Therefore, we propose strategies to extend existing verifiers to perform optimization and find: (i) the most extreme failure in a given input region and (ii) the minimum input perturbation required to cause a failure. A naive approach using a bisection search with an off-the-shelf verifier results in many expensive and overlapping calls to the verifier. Instead, we propose an approach that tightly integrates the optimization process into the verification procedure, achieving better runtime performance than the naive approach. We evaluate our approach implemented as an extension of Marabou, a state-of-the-art neural network verifier, and compare its performance with the bisection approach and MIPVerify, an optimization-based verifier. We observe complementary performance between our extension of Marabou and MIPVerify.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here