Global Solution of Fully-Observed Variational Bayesian Matrix Factorization is Column-Wise Independent

Variational Bayesian matrix factorization (VBMF) efficiently approximates the posterior distribution of factorized matrices by assuming matrix-wise independence of the two factors. A recent study on fully-observed VBMF showed that, under a stronger assumption that the two factorized matrices are column-wise independent, the global optimal solution can be analytically computed. However, it was not clear how restrictive the column-wise independence assumption is. In this paper, we prove that the global solution under matrix-wise independence is actually column-wise independent, implying that the column-wise independence assumption is harmless. A practical consequence of our theoretical finding is that the global solution under matrix-wise independence (which is a standard setup) can be obtained analytically in a computationally very efficient way without any iterative algorithms. We experimentally illustrate advantages of using our analytic solution in probabilistic principal component analysis.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here