Go for a Walk and Arrive at the Answer: Reasoning Over Paths in Knowledge Bases using Reinforcement Learning

Knowledge bases (KB), both automatically and manually constructed, are often incomplete --- many valid facts can be inferred from the KB by synthesizing existing information. A popular approach to KB completion is to infer new relations by combinatory reasoning over the information found along other paths connecting a pair of entities. Given the enormous size of KBs and the exponential number of paths, previous path-based models have considered only the problem of predicting a missing relation given two entities or evaluating the truth of a proposed triple. Additionally, these methods have traditionally used random paths between fixed entity pairs or more recently learned to pick paths between them. We propose a new algorithm MINERVA, which addresses the much more difficult and practical task of answering questions where the relation is known, but only one entity. Since random walks are impractical in a setting with combinatorially many destinations from a start node, we present a neural reinforcement learning approach which learns how to navigate the graph conditioned on the input query to find predictive paths. Empirically, this approach obtains state-of-the-art results on several datasets, significantly outperforming prior methods.

PDF Abstract ICLR 2018 PDF ICLR 2018 Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here