Good Classifiers are Abundant in the Interpolating Regime

22 Jun 2020  ·  Ryan Theisen, Jason M. Klusowski, Michael W. Mahoney ·

Within the machine learning community, the widely-used uniform convergence framework has been used to answer the question of how complex, over-parameterized models can generalize well to new data. This approach bounds the test error of the worst-case model one could have fit to the data, but it has fundamental limitations. Inspired by the statistical mechanics approach to learning, we formally define and develop a methodology to compute precisely the full distribution of test errors among interpolating classifiers from several model classes. We apply our method to compute this distribution for several real and synthetic datasets, with both linear and random feature classification models. We find that test errors tend to concentrate around a small typical value $\varepsilon^*$, which deviates substantially from the test error of the worst-case interpolating model on the same datasets, indicating that "bad" classifiers are extremely rare. We provide theoretical results in a simple setting in which we characterize the full asymptotic distribution of test errors, and we show that these indeed concentrate around a value $\varepsilon^*$, which we also identify exactly. We then formalize a more general conjecture supported by our empirical findings. Our results show that the usual style of analysis in statistical learning theory may not be fine-grained enough to capture the good generalization performance observed in practice, and that approaches based on the statistical mechanics of learning may offer a promising alternative.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here