Gradually Updated Neural Networks for Large-Scale Image Recognition

Depth is one of the keys that make neural networks succeed in the task of large-scale image recognition. The state-of-the-art network architectures usually increase the depths by cascading convolutional layers or building blocks. In this paper, we present an alternative method to increase the depth. Our method is by introducing computation orderings to the channels within convolutional layers or blocks, based on which we gradually compute the outputs in a channel-wise manner. The added orderings not only increase the depths and the learning capacities of the networks without any additional computation costs, but also eliminate the overlap singularities so that the networks are able to converge faster and perform better. Experiments show that the networks based on our method achieve the state-of-the-art performances on CIFAR and ImageNet datasets.

PDF Abstract ICML 2018 PDF ICML 2018 Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here