Graph Augmentation for Recommendation

25 Mar 2024  ·  Qianru Zhang, Lianghao Xia, Xuheng Cai, SiuMing Yiu, Chao Huang, Christian S. Jensen ·

Graph augmentation with contrastive learning has gained significant attention in the field of recommendation systems due to its ability to learn expressive user representations, even when labeled data is limited. However, directly applying existing GCL models to real-world recommendation environments poses challenges. There are two primary issues to address. Firstly, the lack of consideration for data noise in contrastive learning can result in noisy self-supervised signals, leading to degraded performance. Secondly, many existing GCL approaches rely on graph neural network (GNN) architectures, which can suffer from over-smoothing problems due to non-adaptive message passing. To address these challenges, we propose a principled framework called GraphAug. This framework introduces a robust data augmentor that generates denoised self-supervised signals, enhancing recommender systems. The GraphAug framework incorporates a graph information bottleneck (GIB)-regularized augmentation paradigm, which automatically distills informative self-supervision information and adaptively adjusts contrastive view generation. Through rigorous experimentation on real-world datasets, we thoroughly assessed the performance of our novel GraphAug model. The outcomes consistently unveil its superiority over existing baseline methods. The source code for our model is publicly available at: https://github.com/HKUDS/GraphAug.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods