Neural graph embeddings as explicit low-rank matrix factorization for link prediction

16 Nov 2020  ·  Asan Agibetov ·

Learning good quality neural graph embeddings has long been achieved by minimizing the point-wise mutual information (PMI) for co-occurring nodes in simulated random walks. This design choice has been mostly popularized by the direct application of the highly-successful word embedding algorithm word2vec to predicting the formation of new links in social, co-citation, and biological networks. However, such a skeuomorphic design of graph embedding methods entails a truncation of information coming from pairs of nodes with low PMI. To circumvent this issue, we propose an improved approach to learning low-rank factorization embeddings that incorporate information from such unlikely pairs of nodes and show that it can improve the link prediction performance of baseline methods from 1.2% to 24.2%. Based on our results and observations we outline further steps that could improve the design of next graph embedding algorithms that are based on matrix factorization.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here