Graph Neural Network for Music Score Data and Modeling Expressive Piano Performance

ICML 2019  ·  Dasaem Jeong, Taegyun Kwon, Yoojin Kim, Juhan Nam ·

Music score is often handled as one-dimensional sequential data. Unlike words in a text document, notes in music score can be played simultaneously by the polyphonic nature and each of them has its own duration. In this paper, we represent the unique form of musical score using graph neural network and apply it for rendering expressive piano performance from the music score. Specifically, we design the model using note-level gated graph neural network and measure-level hierarchical attention network with bidirectional long short-term memory with an iterative feedback method. In addition, to model different styles of performance for a given input score, we employ a variational auto-encoder. The result of the listening test shows that our proposed model generated more human-like performances compared to a baseline model and a hierarchical attention network model that handles music score as a word-like sequence.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here