Graph Neural Networks for Soft Semi-Supervised Learning on Hypergraphs

25 Sep 2019  ·  Naganand Yadati, Tingran Gao, Shahab Asoodeh, Partha Talukdar, Anand Louis ·

Graph-based semi-supervised learning (SSL) assigns labels to initially unlabelled vertices in a graph. Graph neural networks (GNNs), esp. graph convolutional networks (GCNs), inspired the current-state-of-the art models for graph-based SSL problems. GCNs inherently assume that the labels of interest are numerical or categorical variables. However, in many real-world applications such as co-authorship networks, recommendation networks, etc., vertex labels can be naturally represented by probability distributions or histograms. Moreover, real-world network datasets have complex relationships going beyond pairwise associations. These relationships can be modelled naturally and flexibly by hypergraphs. In this paper, we explore GNNs for graph-based SSL of histograms. Motivated by complex relationships (those going beyond pairwise) in real-world networks, we propose a novel method for directed hypergraphs. Our work builds upon existing works on graph-based SSL of histograms derived from the theory of optimal transportation. A key contribution of this paper is to establish generalisation error bounds for a one-layer GNN within the framework of algorithmic stability. We also demonstrate our proposed methods' effectiveness through detailed experimentation on real-world data. We have made the code available.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here