Graph sampling with determinantal processes

5 Mar 2017  ·  Nicolas Tremblay, Pierre-Olivier Amblard, Simon Barthelmé ·

We present a new random sampling strategy for k-bandlimited signals defined on graphs, based on determinantal point processes (DPP). For small graphs, ie, in cases where the spectrum of the graph is accessible, we exhibit a DPP sampling scheme that enables perfect recovery of bandlimited signals... For large graphs, ie, in cases where the graph's spectrum is not accessible, we investigate, both theoretically and empirically, a sub-optimal but much faster DPP based on loop-erased random walks on the graph. Preliminary experiments show promising results especially in cases where the number of measurements should stay as small as possible and for graphs that have a strong community structure. Our sampling scheme is efficient and can be applied to graphs with up to $10^6$ nodes. read more

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here