GraphAnoGAN: Detecting Anomalous Snapshots from Attributed Graphs

29 Jun 2021  ·  Siddharth Bhatia, Yiwei Wang, Bryan Hooi, Tanmoy Chakraborty ·

Finding anomalous snapshots from a graph has garnered huge attention recently. Existing studies address the problem using shallow learning mechanisms such as subspace selection, ego-network, or community analysis. These models do not take into account the multifaceted interactions between the structure and attributes in the network. In this paper, we propose GraphAnoGAN, an anomalous snapshot ranking framework, which consists of two core components -- generative and discriminative models. Specifically, the generative model learns to approximate the distribution of anomalous samples from the candidate set of graph snapshots, and the discriminative model detects whether the sampled snapshot is from the ground-truth or not. Experiments on 4 real-world networks show that GraphAnoGAN outperforms 6 baselines with a significant margin (28.29% and 22.01% higher precision and recall, respectively compared to the best baseline, averaged across all datasets).

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here