GraphMETRO: Mitigating Complex Graph Distribution Shifts via Mixture of Aligned Experts

7 Dec 2023  ·  Shirley Wu, Kaidi Cao, Bruno Ribeiro, James Zou, Jure Leskovec ·

Graph data are inherently complex and heterogeneous, leading to a high natural diversity of distributional shifts. However, it remains unclear how to build machine learning architectures that generalize to complex non-synthetic distributional shifts naturally occurring in the real world. Here we develop GraphMETRO, a Graph Neural Network architecture, that reliably models natural diversity and captures complex distributional shifts. GraphMETRO employs a Mixture-of-Experts (MoE) architecture with a gating model and multiple expert models, where each expert model targets a specific distributional shift to produce a shift-invariant representation, and the gating model identifies shift components. Additionally, we design a novel objective that aligns the representations from different expert models to ensure smooth optimization. GraphMETRO achieves state-of-the-art results on four datasets from GOOD benchmark comprised of complex and natural real-world distribution shifts, improving by 67% and 4.2% on WebKB and Twitch datasets.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods